

Engine Icing Simulation and Detection

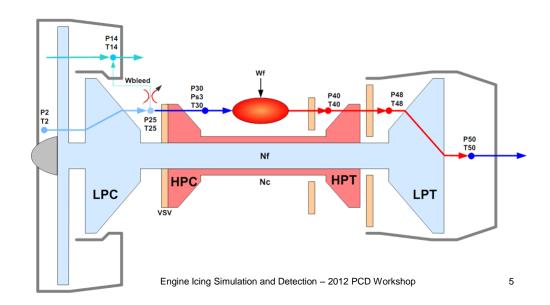
Ryan May
ASRC Aerospace Corp

2012 PCD Workshop Cleveland, Ohio

Overview

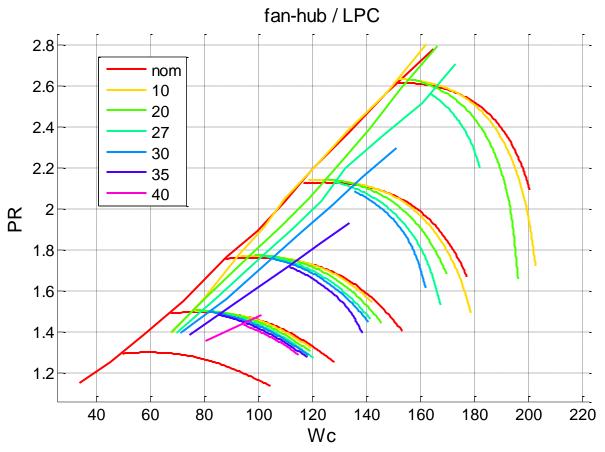
- Problem of Engine Power Loss
- Engine Rollback
- Modeling Engine Icing Effects
- Simulation of Engine Rollback
- Icing/Engine Control System Interaction
- Detection of Ice Accretion
- Mitigation of Engine Rollback
- Conclusions

Problem of Engine Power Loss


- More than 200 power loss events reported in last 20 years in High Ice Water Content conditions
 - Temporary or sustained power loss, uncontrollability, engine shutdown
- Many possible causes:
 - Compressor surge
 - Flame-out due to combustor ice ingestion
 - Damage due to ice shedding
 - Sensor Icing
 - Engine Rollback

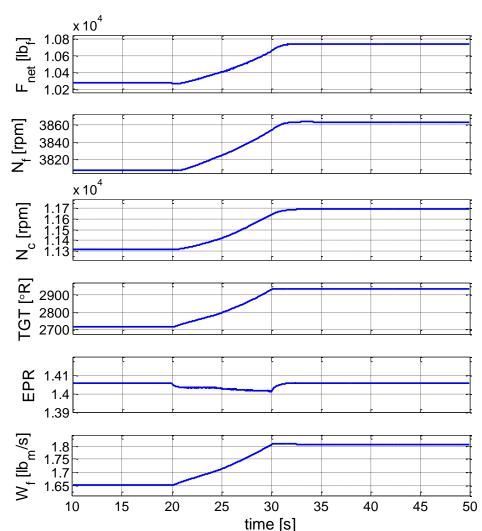
Engine Rollback

- Associated with ice accretion in compressors
- Symptoms:
 - Uncommanded thrust reduction
 - Decrease in fan shaft speed
 - Increase in turbine temperature
 - Increasing the throttle does not produce additional thrust
- To study rollback, we must be able to realistically simulate it

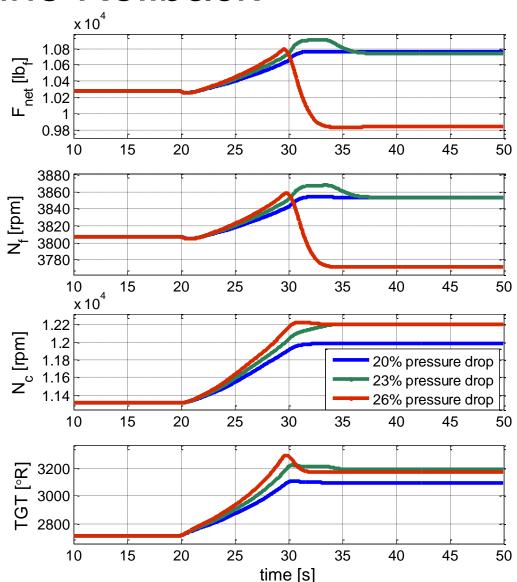

Modeling of Engine Icing Effects

- C-MAPSS40k engine simulation
 - Commercial 40,000lbf thrust, high-bypass turbofan engine
 - Physics-based model
 - Realistic engine control system
 - Written in MATLAB/Simulink
 - Modular design

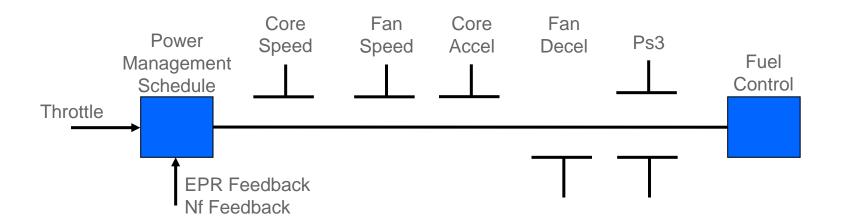
Modeling of Engine Icing Effects


- LPC Compressor maps with various quantities of ice blockage in the 2nd row stator
- Integrated into C-MAPSS40k
 - Linear interpolation between maps

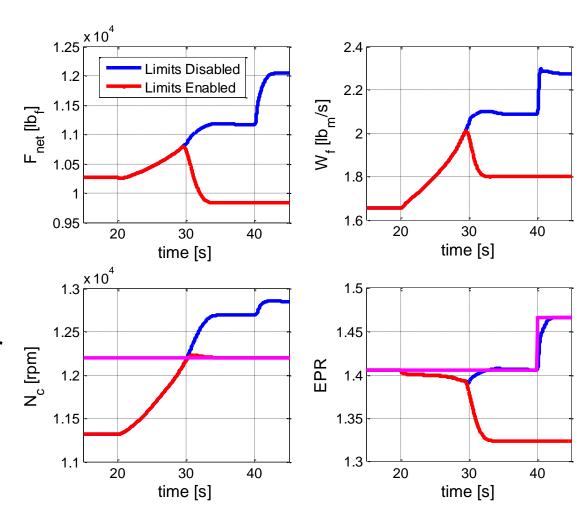
- Decrease in Surge Line
- Speed Lines shift to the left


Simulation of Engine Rollback

- Impact of Engine Icing
 - Start from nominal conditions and increase the blockage level
 - Move from nominal LPC map to 20% blocked map
- Effect:
 - Drop in EPR -> increase in fuel flow rate and thus increase in Fnet, Nf, Nc, TGT
 - No Rollback event

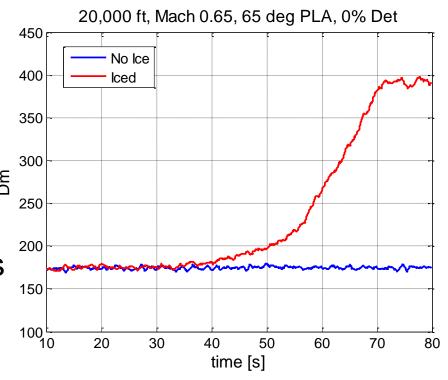

Simulation of Engine Rollback

- As blockage increases, eventually a rollback occurs
- Decrease in thrust
- Decrease in fan speed
- Increase in TGT


Engine Control System

- Power Management
 - Responsible for holding current power level (EPR or Nf)
- Protection Logic
 - Responsible for ensuring safe operation
 - Adjusts Fuel Flow to ensure limits are observed

Controller Response To Icing


- Core speed limit prevents fuel flow rate from continuing to increase
- With limits
 disabled there is
 no rollback (but
 engine is at higher
 risk of failure due
 to high core
 speed)

Detection of Engine Icing

- Typically 5 7 sensors present in an engine
- Icing introduces a fault signature that can be detected with these sensors
- Use a Distance Measure

 (Dm) to determine deviation
 from expected sensor values
- Operate in conjunction with airframe devices to reduce chance of false-positive

Developing a technique for full envelope detection

Mitigation of Engine Ice Accretion

- Ideally, completely avoid ice accretion
- If we can detect accretion can the engine controller act to mitigate the impact of the ice blockage?
- Potential mitigation strategies:
 - Operate actuators off-nominally to change operating point to either melt/prevent ice accretion or reduce chance of rollback
 - Close inter-compressor bleed valve
 - Move HPC inlet guide vanes off schedule
 - Use existing airframe integration in novel ways (e.g. customer bleed, power takeoffs)
 - Change shaft speed to cause ice to shed

Future Work

- Complete development of engine icing detection algorithm
- Test various mitigation techniques
 - Work with Turbomachinery and Icing branches at GRC to evaluate results and impact on ice accretion
- Validate models based on data from upcoming (FY13 & 14) engine icing flight tests and rig tests in GRC's Propulsion Systems Laboratory

Related NASA Publications:

- Jorgenson, P.C.E., Veres, J.P., May, R.D., Wright, W.B., "Engine Icing Modeling and Simulation (Part I): Ice Crystal Accretion on Compression System Components and Modeling its Effects on Engine Performance," 2011-38-0025, SAE International Conference on Aircraft and Engine Icing and Ground Deicing, Chicago, IL, Jun 13-17, 2011. doi:10.4271/2011-38-0025
- May, R.D., Guo, T-H., Veres J.P., Jorgenson, P.C.E., "Engine Icing Modeling and Simulation (Part 2): Performance Simulation of Engine Rollback Phenomena," 2011-38-0026, SAE International Conference on Aircraft and Engine Icing and Ground Deicing, Chicago, IL, Jun 13-17, 2011. doi:10.4271/2011-38-0026
- May, R.D., Simon, D.L., Guo, T.H., "Modeling and Detection of Ice Particle Accretion in Aircraft Engine Compression Systems," to be published at AIAA Atmospheric Flight Mechanics Conference, Minneapolis, Minnesota, August 13-16, 2012.

